
Number Classes

3-22

COOL User’s Manual

Line 20 declares a range-checked string object and line 21 sets the default comparison
routine for this object, should one be needed. Line 22 initializes the object with a string
value. Lines 23 through 25 output the lower and upper bounds and the value. Line 26
displays the number of characters in the string by means of a system-supplied string
length function and the implicit type conversion operator for the Range class. Finally,
the program ends with a valid exit code.

The following shows the output from the program:

r1 has an inclusive low bound of 2.5, an inclusive high bound of 8.8,

and a value of 4.3

4.3 * 1.9 = 8.17

r2 has an inclusive low bound of D, an inclusive high bound of K,

a value of EFG, and a length of 3

Number Classes

3-21

COOL User’s Manual

inline void set_compare (Range_Compare r_fcn);
Sets the compare function for this class of Range<Type,lbound,hbound>.
Range_Compare is a function of type int (*Function)(const Type&, const
Type&).

inline operator Type () const;
Overloads the implicit conversion operator for the parameterized type to facilitate
mixed-type expressions and statements.

Range Example 3.12 The following program declares two range-checking objects, one of type double
and one of type char*. Each has type-specific upper and lower bounds that, if violated,
result in a run-time exception. Values are assigned to each object and the implicit use of
the type conversion operator is demonstrated.

 1 #include <COOL/Range.h> // Include range header file

 2 #include <string.h> // C++ ANSI C string functions

 3 DECLARE Range<double,2.5,8.8>; // Declare range of doubles

 4 IMPLEMENT Range<double,2.5,8.8>; // Implement range of doubles

 5 DECLARE Range<char*,”D”, ”K”>; // Declare range of strings

 6 IMPLEMENT Range<char*, ”D”, ”K”>; // Implement range of strings

 7 int my_compare (const charP& s1, const charP& s2) {
 8 return (strcmp (s1, s2));
 9 }

10 int main (void) {
11 // Range–checked double

12 r1.set(4.3); // Assign value

13 cout << ”r1 has an inclusive low bound of ” << r1.low(); // Output low and
14 cout << ”an inclusive high bound of ” << r1.high() << ”,\n”; // High
15 cout << ”and a value of ” << (double)r1 << ”\n”; // Output value
16 double d1 = 1.9; // Declare a double

17 cout << (double)r1 << ” * ” << d1 << ” = ”; // Output equation

18 r1.set (d1 * r1); // Calculate value

19 cout << (double)r1 << ”\n”;// And display it
20 Range<charP,”D”,”K”> r2; // Range–checked string

21 r2.set_compare (&my_compare); // Set compare function

22 r2.set(”EFG”); // Assign value

23 cout << ”r2 has an inclusive low bound of ” << r2.low();
24 cout << ”an inclusive high bound of ” << r2.high() << ”,\n”;
25 cout << ”a value of ” << (char*)r2; // Output string value

26 cout << ”, and a length of ” << strlen (r2) << ”\n”; // Output length
27 return 0; // Exit with OK status

28 }

Line 1 includes the COOL Range.h class header file and line 2 includes the COOL
String.h class header file. Lines 3 through 6 declare and implement two kinds of
range-checking objects: one a double with a low bound of 2.5 and a high bound of 8.8,
and the other a character string object with a low bound of “D” and a high bound of “K”.
Lines 7 through 9 define a comparison function for the range-checked string object,
although in this program, it is not actually used. Line 11 declares a range object of type
double with upper and lower bounds as before and line 12 gives this object a value.
Lines 13 and 14 output the lower and upper bounds and line 15 displays the value of the
object via a cast. Lines 16 through 18 show the object used in an arithmetic expression
and line 19 prints the result.

Number Classes

3-20

COOL User’s Manual

Range Class 3.11 The parameterized Range<Type,lbound,hbound> class enables arbitrary user-

defined ranges to be implemented in C++ classes. Typically, but not always, this is used
with other number classes to select a range of valid values for a particular numerical
type. Features and advantages of this class are discussed in this section. However, com-
plete details of parameterized templates are provided in Section 5.

The Range<Type,lbound,hbound> class is publicly derived from the Range class and
supports user-defined ranges for a type of object or built-in data type. This allows other
higher level data structures such as the Rational and Complex classes to be restricted to
a range of values. The programmer does not have to add bounds-checking code to the
application. A vector of positive integers, for example, would be easy to declare, facili-
tating bounds checking restricted to the code that implements the type, not the vector.

The inclusive low and high bounds for the range are specified as arguments to the
parameterized type declaration and implementation macro calls. They are declared as
C++ constants of the appropriate type. No storage is allocated, and all references are
compiled out by the compiler. Once declared, a Range<Type,lbound,hbound> object
cannot have its upper or lower bounds changed because maintenance of all instances
would require significant and unwarranted overhead.

Name: Range<Type,lbound,hbound> — A parameterized range

Synopsis: #include <COOL/Range.h>

Base Classes: Range

Friend Classes: None

Constructors: Range<Type,lbound,hbound> ();
Creates an empty range object of the specified type and ranges.

Range<Type,lbound,hbound> (const Type& value);
Creates a range object with the specified value. If value is outside of the lower and
upper bounds, an Error exception is raised.

Range<Type,lbound,hbound> (const Range<Type,lbound,hbound>& r);
Creates a new range object with the same value as the range object r.

Member Functions: inline const Type& high () const;
Returns a reference to the upper limit of the range.

inline const Type& low () const;
Returns a reference to the lower limit of the range.

inline Range<Type,lbound,hbound>& operator=
(const Range<Type,lbound,hbound>& r);

Overloads the assignment operator for the Range<Type,lbound,hbound> class and
assigns the range object the value of r. This function returns a reference to the up-
dated object.

inline void set (const Type& value);
Sets the value of the range object to value if within the lower and upper limits;
otherwise, this function raises an Error exception.

Number Classes

3-19

COOL User’s Manual

Bignum Example 3.10 The following program uses the Bignum integer data type in a semantically

equivalent manner to the built-in int or long data types to perform arithmetic and logi-
cal operations. The only difference is that the values manipulated are larger than
MAX_INT or MAX_LONG would allow on a 32-bit computer.

 1 #include <COOL/Bignum.h> // Include Bignum class

 2 int main (void) {

 3 Bignum b1; // Create Bignum object

 4 Bignum b2 = ”0xFFFFFFFF”; // Create Bignum object

 5 Bignum b3 = ”1.2345e30”; // Create Bignum object

 6 cout << ”b2 = ” << b2 << ”\n”; // Display value of b2

 7 cout << ”b3 = ” << b3 << ”\n”; // Display value of b3

 8 b1 = b2 + b3; // Add b2 and b3

 9 cout << ”b2 + b3 = ” << b1 << ”\n”; // Display result

10 b1 = b2 – b3; // Subtract b3 from b2

11 cout << ”b2 – b3 = ” << b1 << ”\n”; // Display result

12 b1 = b2 * b3; // Multiply b2 and b3

13 cout << ”b2 * b3 = ” << b1 << ”\n”; // Display result

14 b1 = b3 / b2; // Divide b2 into b3

15 cout << ”b3 / b2 = ” << b1 << ”\n”; // Display result

16 b1 = b3 % b2; // Get b3 modulo b2

17 cout << ”b3 % b2 = ” << b1 << ”\n”; // Display result

18 return 0; // Exit with status code

19 }

Line 1 includes the COOL Bignum class header file. Line 3 creates a bignum object
initialized to zero. Lines 3 and 4 create Bignum objects initialized to very large integer
values. Lines 5 and 6 output these values on the standard output stream. Lines 8 through
17 compute the sum, difference, product, quotient, and remainder of various Bignum
values and output the answer. Finally, the program ends with a valid exit code.

The following shows the output from the program:

 1 b2 = 4294967295

 2 b3 = 1234500000000000000000000000000

 3 b2 + b3 = 1234500000000000000004294967295

 4 b2 – b3 = –1234499999999999999995705032705

 5 b2 * b3 = 5302137125674500000000000000000000000000

 6 b3 / b2 = 287429429657624435997

 7 b3 % b2 = 64281885

Number Classes

3-18

COOL User’s Manual

inline friend Bignum operator– (const Bignum& bn1,

const Bignum& bn2);
Overloads the subtraction operator to provide subtraction for the Bignum class. A
new Bignum object is returned as the result. If the operation results in an arithmetic
error of some type, the appropriate exception is raised.

friend Bignum operator* (const Bignum& bn1, const Bignum& bn2);
Overloads the multiplication operator to provide multiplication for the Bignum
class. A new Bignum object is returned as the result. If the operation results in an
arithmetic error of some type, the appropriate exception is raised.

friend Bignum operator/ (const Bignum& bn1, const Bignum& bn2);
Overloads the division operator for the Bignum class. A new Bignum object is re-
turned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

friend Bignum operator% (const Bignum& bn1, const Bignum& bn2);
Overloads the modulus operator for the Bignum class. A new Bignum object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

friend Bignum operator& (const Bignum& bn1, const Bignum& bn2);
Overloads the logical AND operator for the Bignum class. A new Bignum object
is returned as the result. If the operation results in an arithmetic error of some type,
the appropriate exception is raised.

friend Bignum operator^ (const Bignum& bn1, const Bignum& bn2);
Overloads the logical exclusive-or operator for the Bignum class. A new Bignum
object is returned as the result. If the operation results in an arithmetic error of some
type, the appropriate exception is raised.

friend Bignum operator| (const Bignum& bn1, const Bignum& bn2);
Overloads the logical OR operator for the Bignum class. A new Bignum object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

friend Bignum operator>> (const Bignum& bn1, const Bignum& bn2);
Overloads the right shift operator for the Bignum class. A new Bignum object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

friend Bignum operator<< (const Bignum& bn1, const Bignum& bn2);
Overloads the left shift operator for the Bignum class. A new Bignum object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

friend ostream& operator<< (ostream& os, const Bignum& bn);
Overloads the output operator for a reference to a Bignum object to provide a for-
matted output.

inline friend ostream& operator<< (ostream& os, const Bignum* bn);
Overloads the output operator for a pointer to a Bignum object to provide a format-
ted output.

Number Classes

3-17

COOL User’s Manual

void operator|= (const Bignum& bn);
Overloads the logical OR with assignment operator for the Bignum class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

void operator>>= (const Bignum& bn);
Overloads the right shift with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator<<= (const Bignum& bn);
Overloads the left shift with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

Boolean operator== (const Bignum& bn) const;
Overloads the equality operator for the Bignum class. This function returns TRUE
if the near-infinite precision integers have the same value; otherwise, this function
returns FALSE.

inline Boolean operator!= (const Bignum& bn) const;
Overloads the inequality operator for the Bignum class. This function returns
TRUE if the near-infinite precision integers have different values; otherwise, this
function returns FALSE.

Boolean operator< (const Bignum& bn) const;
Overloads the less than operator for the Bignum class and returns TRUE if the
object is less than the specified argument; otherwise, this function returns FALSE.

inline Boolean operator<= (const Bignum& bn) const;
Overloads the less than or equal operator for the Bignum class. This function re-
turns TRUE if the object is less than or equal to the value of the specified argument
; otherwise, this function returns FALSE.

Boolean operator> (const Bignum& bn) const;
Overloads the greater than operator for the Bignum class and returns TRUE if the
object is greater than the specified argument; otherwise, this function returns
FALSE.

inline Boolean operator>= (const Bignum& bn) const;
Overloads the greater than or equal operator for the Bignum class. This function
returns TRUE if the object is greater than or equal to the value of the specified
argument ; otherwise, this function returns FALSE.

operator short ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in short type when appropriate.

inline N_Status status () const;
Returns the numerical exception state of the Bignum object.

Friend Functions: friend Bignum operator+ (const Bignum& bn1, const Bignum& bn2);
Overloads the addition operator to provide addition for the Bignum class. A new
Bignum object is returned as the result. If the operation results in an arithmetic er-
ror of some type, the appropriate exception is raised.

Number Classes

3-16

COOL User’s Manual

inline Boolean operator! () const;
Overloads the unary negation operator for the Bignum class. A new Bignum object
is returned as the result. If the operation results in an arithmetic error of some type,
the appropriate exception is raised.

Bignum operator~ () const;
Overloads the unary exclusive-or operator for the Bignum class. A new Bignum
object is returned as the result. If the operation results in an arithmetic error of some
type, the appropriate exception is raised.

Bignum& operator++ ();
Overloads the increment operator to provide an increment capability for the Big-
num class. A reference to the modified Bignum object is returned as the result. If
the operation results in an arithmetic error of some type, the appropriate exception
is raised.

Bignum& operator–– ();
Overloads the decrement operator to provide a decrement capability for the Big-
num class. A reference to the modified Bignum object is returned as the result. If
the operation results in an arithmetic error of some type, the appropriate exception
is raised.

void operator+= (const Bignum& bn);
Overloads the addition with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator–= (const Bignum& bn);
Overloads the subtraction with assignment operator for the Bignum class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

void operator*= (const Bignum& bn);
Overloads the multiplication with assignment operator for the Bignum class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

void operator/= (const Bignum& bn);
Overloads the division with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator%= (const Bignum& bn);
Overloads the modulus with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator&= (const Bignum& bn);
Overloads the logical AND with assignment operator for the Bignum class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

void operator^= (const Bignum& bn);
Overloads the exclusive-or with assignment operator for the Bignum class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

Number Classes

3-15

COOL User’s Manual

Name: Bignum — Infinite precision integers

Synopsis: #include <COOL/Bignum.h>

Base Classes: Generic

Friend Classes: None

Constructors: inline Bignum ();
Simple constructor to create a near-infinite precision integer object initialized to
zero.

Bignum (const char* str);
Constructor to create a near-infinite precision integer object from the character
string representation str.

Bignum (double d);
Constructor to create a near-infinite precision integer object from the double value
d.

Bignum (long l);
Constructor to create a near-infinite precision integer object from the long integer
value l.

Bignum (const Bignum& bn);
Constructor to create a near-infinite precision integer object from bn.

Member Functions: operator double ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in double type when appropriate.

operator float ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in float type when appropriate.

operator int ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in int type when appropriate.

operator long ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in long type when appropriate.

Bignum operator– () const;
Overloads the unary minus operator for the Bignum class and returns a new object
whose value is the negated value of the object. If the operation results in an arithme-
tic error of some type, the appropriate exception is raised.

Bignum& operator= (const char* str);
Overloads the assignment operator for the Bignum class and assigns the integer
representation from the character string str to the near-infinite precision integer
object. A reference to the updated object is returned.

Bignum& operator= (const Bignum& bn);
Overloads the assignment operator for the Bignum class and assigns bn to the near-
infinite precision integer object. A reference to the updated object is returned.

Number Classes

3-14

COOL User’s Manual

Bignum Class 3.9 The Bignum class implements near-infinite precision integers and arithmetic by

using a dynamic bit vector. A Bignum object will grow in size as necessary to hold its
integer value. Implicit conversion to the system defined types short, int, long, float,
and double is supported by overloaded operator member functions. Addition and sub-
traction operators are performed by simple bitwise addition and subtraction on un-
signed short boundaries with checks for carry flag propagation. The multiplication,
division, and remainder operations utilize the algorithms from Knuth’s Volume 2 of
“The Art of Computer Programming”. However, despite the use of these algorithms and
inline member functions, arithmetic operations on Bignum objects are considerably
slower than the built-in integer types that use hardware integer arithmetic capabilities.

NOTE: The Bignum class requires that the built-in type long is larger than the built-in
type short and can accommodate the result of multiplying two short values. The maxi-
mum positive value that can be represented by the Bignum class is:
(2^(sizeof(unsigned long) * sizeof(unsigned short)))–1.

The Bignum class supports the parsing of character string representations of all the lit-
eral number formats. The following table shows an example of a character string repre-
sentation on the left and a brief description of the interpreted meaning on the right:

Character String Representation Interpreted Meaning

1234 1234
1234l 1234
1234L 1234
1234u 1234
1234U 1234
1234ul 1234
1234UL 1234
01234 1234 in octal (leading 0)
0x1234 1234 in hexadecimal (leading 0x)
0X1234 1234 in hexadecimal (leading 0X)
123.4 123 (value truncated)
1.234e2 123 (exponent expanded/truncated)
1.234e–5 0 (truncated value less than 1)

The Bignum class implements common arithmetic exception handling and provides
application support for detecting negative infinity, positive infinity, overflow, and un-
derflow that may result from an operation. If one of these conditions is detected, an
exception is raised. The programmer can provide an exception handler at runtime to
take care of this problem. If no such handler is available, an error message is printed and
program execution terminates. See Section 13 for more information on the COOL ex-
ception handling mechanism.

Number Classes

3-13

COOL User’s Manual

Rational Example 3.8 The following program uses the Rational class and the built-in float type to illus-

trate the added precision available for calculations involving multiplication, division,
addition, and determining the remainder for numeric ratios. The first half of the pro-
gram calculates answers for problems using the Rational class. The second half calcu-
lates answers for the same problems using the built-in float type. The results from each
are printed on the standard output stream for comparison of precision.

 1 #include <COOL/Rational.h> // Include COOL Rational class

 2 int main (void) {

 3 Rational r1 (10,3); // Create rational object

 4 Rational r2 (–4,27), r3; // Create rational objects

 5 r3 = r1 + r2; // Calculate sum of values

 6 cout << r1 << ” + ” << r2 << ” = ” << r3 << ”\n”; // And display result

 7 r3 = r1 * r2; // Calculate product of values

 8 cout << r1 << ” * ” << r2 << ” = ” << r3 << ”\n”; // And display result

 9 r3 = r1 / r2; // Calculate quotient of values

10 cout << r1 << ” / ” << r2 << ” = ” << r3 << ”\n”; // And display result
11 r3 = r1 % r2; // Calculate remainder of values

12 cout << r1 << ” % ” << r2 << ” = ” << r3 << ”\n”; // And display result

13 double d1 = double (10.0 / 3.0); // Create double ratio

14 double d2 = double (–4.0 / 27.0), d3; // Create double ratios

15 d3 = d1 + d2; // Calculate sum of values

16 cout << d1 << ” + ” << d2 << ” = ” << d3 << ”\n”; // And display result

17 d3 = d1 * d2; // Calculate product of values

18 cout << d1 << ” * ” << d2 << ” = ” << d3 << ”\n”; // And display result

19 d3 = d1 / d2; // Calculate quotient of values

20 cout << d1 << ” / ” << d2 << ” = ” << d3 << ”\n”; // And display result

21 return 0; // Return valid success code

22 }

Line 1 includes the COOL Rational.h class header file. Lines 3 and 4 declare three
rational objects (r1, r2, r3), the first two of which have initial values of 10/3 and –4/27,
respectively. Lines 5 and 6 calculate the sum of the two rational objects, assign it to the
third, and display the answer. Likewise, lines 7 and 8 calculate the product, lines 9 and
10 calculate the quotient, and lines 11 and 12 calculate the remainder of the same two
rational numbers. Lines 13 through 20 perform the same calculations with the built-in
type double as were performed in lines 3 through 10. As indicated from the results, a
loss of precision occurs from the floating point calculations, thus highlighting the po-
tential benefit of using the ratios maintained by the Rational number class. Finally, the
program ends with a valid exit code.

The following shows the output from the program:

10/3 + –4/27 = 86/27

10/3 * –4/27 = –40/81

10/3 / –4/27 = –45/2

10/3 % –4/27 = 2/27

3.33333 + –.148148 = 3.18519

3.33333 * –.148148 = –.493827

3.33333 / –.148148 = –22.5

Number Classes

3-12

COOL User’s Manual

friend Rational operator* (const Rational& r1, const Rational& r2);
Overloads the multiplication operator for the Rational class. A new rational object
is returned as the result. If the operation results in an arithmetic error of some type,
the appropriate exception is raised.

inline friend Rational operator/ (const Rational& r1, const Rational& r2);
Overloads the division operator for the Rational class. A new rational object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

friend Rational operator% (const Rational& r1, const Rational& r2);
Overloads the modulus operator for the Rational class. A new rational object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

inline friend ostream& operator<< (ostream& os, const Rational& r);
Overloads the output operator for a reference to a rational object to provide a for-
matted output capability.

inline friend ostream& operator<< (ostream& os, const Rational* r);
Overloads the output operator for a pointer to a rational object to provide a format-
ted output capability.

Number Classes

3-11

COOL User’s Manual

inline Rational& operator–– ();
Provides a decrement capability for the Rational class. If the operation results in an
arithmetic error of some type, the appropriate exception is raised. A reference to
the modified Rational object is returned.

inline Boolean operator== (const Rational& r) const;
Overloads the equality operator for the Rational class. This function returns
TRUE if the rational numbers have the same value; otherwise, this function returns
FALSE.

inline Boolean operator!= (const Rational& r) const;
Overloads the inequality operator for the Rational class. This function returns
TRUE if the rational numbers have different values; otherwise, this function re-
turns FALSE.

Boolean operator< (const Rational& r) const;
Overloads the less-than-operator for the Rational class and returns TRUE if the
object is less than the specified argument; otherwise, this function returns FALSE.

inline Boolean operator<= (const Rational& r) const;
Overloads the less-than-or-equal operator for the Rational class. This function re-
turns TRUE if the object is less than or equal to the value of the specified argument;
otherwise, this function returns FALSE.

Boolean operator> (const Rational& r) const;
Overloads the greater-than operator for the Rational class and returns TRUE if the
object is greater than the specified argument; otherwise, this function returns
FALSE.

inline Boolean operator>= (const Rational& r) const;
Overloads the greater-than-or-equal operator for the Rational class. This function
returns TRUE if the object is greater than or equal to the value of the specified
argument ; otherwise, this function returns FALSE.

long round () const;
Returns an integer that represents the value of the rational object truncated towards
the nearest integer.

operator short ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in short type when appropriate.

inline N_Status status () const;
Returns the numerical exception state of the rational object.

inline long truncate () const;
Returns an integer that represents the value of the rational object truncated towards
zero.

Friend Functions: friend Rational operator+ (const Rational& r1, const Rational& r2);
Overloads the addition operator for the Rational class. A new rational object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

inline friend Rational operator– (const Rational& r1, const Rational& r2);
Overloads the subtraction operator to provide subtraction for the Rational class. A
new rational object is returned as the result. If the operation results in an arithmetic
error of some type, the appropriate exception is raised.

Number Classes

3-10

COOL User’s Manual

operator int ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in int type when appropriate.

Rational& invert ();
Returns a reference to the inverse of the rational number object.

operator long ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in long type when appropriate.

inline long numerator () const;
Returns the numerator value of the object.

inline Rational operator–();
Overloads the unary minus operator for the Rational class and returns a new object
whose value is the negated value of the object. If the operation results in an arithme-
tic error of some type, the appropriate exception is raised.

inline Rational& operator= (const Rational& r);
Overloads the assignment operator for the Rational class and assigns one rational
number to have the value of another. A reference to the updated object is returned.

void operator+= (const Rational& r);
Overloads the addition-with-assignment operator for the Rational class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

inline void operator–= (const Rational& r);
Overloads the subtraction-with-assignment operator for the Rational class. If the
operation results in an arithmetic exception of some type, the appropriate exception
is raised.

void operator*= (const Rational& r);
Overloads the multiplication-with-assignment operator for the Rational class. If
the operation results in an arithmetic error of some type, the appropriate exception
is raised.

inline void operator/= (const Rational& r);
Overloads the division-with-assignment operator for the Rational class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator%= (const Rational& r);
Overloads the modulus with assignment operator for the Rational class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

inline Boolean operator!() const;
Overloads the logical NOT operator for the Rational class and returns TRUE if the
complex number has a zero value; otherwise, this function returns FALSE.

inline Rational& operator++ ();
Provides an increment capability for the Rational class. If the operation results in
an arithmetic error of some type, the appropriate exception is raised. A reference to
the modified Rational object is returned.

Number Classes

3-9

COOL User’s Manual

Rational Class 3.7 The Rational class provides infinite precision rational numbers and arithmetic

using the built-in long type for the numerator and denominator objects. Consequently, a
rational object will grow in 32-bit chunks as necessary. Implicit conversion to the sys-
tem-defined types short, int, long, float, and double is supported by overloaded opera-
tor member functions. However, arithmetic operations on rational objects are slower
than the built-in integer types.

The Rational class implements common arithmetic exception handling and provides
application support for detecting negative infinity, positive infinity, overflow, and un-
derflow that may result from an operation. If one of these conditions is detected or if an
attempt to convert from a Rational with no value to a built-in type is made, an exception
is raised. The programmer can provide an exception handler at runtime to take care of
this problem. If no such handler is available, an error message is printed and program
execution terminates. See Section 13 for more information on the COOL exception han-
dling mechanism.

Name: Rational — Infinite precision rational numbers

Synopsis: #include <COOL/Rational.h>

Base Classes: Generic

Friend Classes: None

Constructors: inline Rational ();
Simple constructor to create a new rational object.

Rational (long n, long d = 1);
Constructor that specifies an integer numerator and optional denominator argu-
ments to create a new rational object.

Rational (const Rational& r);
Constructor that takes a reference to an existing rational object and creates a new
object with the same value.

Member Functions: inline long ceiling () const;
Returns an integer that represents the value of the rational object truncated towards
positive infinity.

inline long denominator () const;
Returns the denominator value of the object.

inline operator double ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in double type when appropriate.

operator float ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in float type when appropriate.

inline long floor () const;
Returns an integer that represents the value of the rational object truncated towards
negative infinity.

Number Classes

3-8

COOL User’s Manual

22 in_parallel (in_series (resistor (100.0), inductor (0.2)),

23 in_parallel (capacitor (0.000001),

24 resistor (10000000.0))));

25 cout << ”Circuit impedance is ” << circuit << ” at frequency ” <<

FREQUENCY << ”\n”;

26 return 0; // Exit with OK status
27 }

Line 1 includes the COOL Complex.h class header file. Lines 2 and 3 define a fre-
quency constant and a value OMEGA based upon pi and the frequency and is used in calcu-
lating impedance formulas. Lines 4 through 6 define a function for calculating the
impedance of two components placed in series. Similarly, lines 7 through 9 define a
function for calculating the impedance of two components placed in parallel. Lines 10
through 18 provide functions for determining the impedance of resistors, inductors, and
capacitors, based upon their tolerances. Line 21 is the heart of the program that calls the
necessary functions to calculate the impedance of a circuit. Finally, the result is sent to
the standard output and the program ends with a successful exit code. Figure 3.1 illus-
trates the circuit used in this example program.

10MΩ

1Ω

0.2Hy

100Ω

1µF

Figure 3.1

The following shows the output from the program:

Circuit impedance is (2000.6,0.00747744) at frequency 346.87

Number Classes

3-7

COOL User’s Manual

inline friend Complex operator– (const Complex& c1,
const Complex& c2);

Overloads the subtraction operator for the Complex class. A new complex object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

inline friend Complex operator* (const Complex& c1,
const Complex& c2);

Overloads the multiplication operator for the Complex class. A new complex ob-
ject is returned as the result. If the operation results in an arithmetic error of some
type, the appropriate exception is raised.

friend Complex operator/ (const Complex& c1, const Complex& c2);
Overloads the division operator to provide division for the Complex class. A new
complex object is returned as the result. If the operation results in an arithmetic
error of some type, the appropriate exception is raised.

inline friend ostream& operator<< (ostream& os, const Complex& c);
Overloads the output operator for a reference to a complex object to provide a for-
matted output.

inline friend ostream& operator<< (ostream& os, const Complex* c);
Overloads the output operator for a pointer to a complex object to provide a format-
ted output.

Complex Example 3.6 The following impedance example using complex numbers is accredited to a

LISP program published in LISP, written by Patrick Henry Winston and Berthold Klaus
Paul Horn. This example calculates the impedance of an electrical circuit operating at a
given frequency by using standard formulas from basic hardware design texts.

 1 #include <COOL/Complex.h> // Include complex header file
 2 #define FREQUENCY 346.87

 3 #define OMEGA (2 * 3.14159265358979323846 * FREQUENCY)

 4 inline Complex in_series (const Complex& c1, const Complex& c2) {

 5 return (c1+c2);

 6 }

 7 inline Complex in_parallel (const Complex& c1, const Complex& c2) {

 8 return ((c1.invert() + c2.invert()).invert ());

 9 }

10 inline Complex resistor (double r) {

11 return Complex (r);

12 }

13 inline Complex inductor (double i) {

14 return (Complex (0.0, i * OMEGA));

15 }

16 inline Complex capacitor (double c) {

17 return (Complex (0.0, –1.0 / (c * OMEGA)));

18 }

19 int main (void) {

20 Complex circuit;

21 circuit = in_series (resistor (1.0),

Number Classes

3-6

COOL User’s Manual

inline Complex& operator–– ();
Overloads the decrement operator to provide a decrement capability for the
Complex class. If the operation results in an arithmetic error of some type, the ap-
propriate exception is raised. A reference to the updated complex object is re-
turned.

inline Boolean operator! () const;
Overloads the logical NOT operator for the Complex class and returns TRUE if
the complex number has a zero value; otherwise, this function returns FALSE.

inline Boolean operator== (const Complex& c) const;
Overloads the equality operator for the Complex class. This function returns
TRUE if the complex numbers have the same value; otherwise, this function re-
turns FALSE.

inline Boolean operator!= (const Complex& c) const;
Overloads the inequality operator for the Complex class. This function returns
TRUE if the complex numbers have different values; otherwise, this function re-
turns FALSE.

inline double real () const;
Returns the real part of the complex number.

operator short ();
Overloaded operator to provide implicit conversion between complex objects and
the built-in short type when appropriate.

inline Complex sin (Complex& c) const;
Calculates the sine of a complex number c. A new complex object is returned as the
result. If the operation results in an arithmetic error of some type, the appropriate
exception is raised.

inline Complex sinh (Complex& c) const;
Calculates the hyperbolic sine of a complex number c. A new complex object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

inline N_Status status () const;
Returns the numerical exception state of the complex object.

inline Complex tan (Complex& c) const;
Calculates the tangent of a complex number c. A new complex object is returned as
the result. If the operation results in an arithmetic error of some type, the appropri-
ate exception is raised.

inline Complex tanh (Complex& c) const;
Calculates the hyperbolic tangent of a complex number c. A new complex object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

Friend Functions: inline friend Complex operator+ (const Complex& c1,
const Complex& c2);

Overloads the addition operator to provide addition for the Complex class. A new
complex object is returned as the result. If the operation results in an arithmetic
error of some type, the appropriate exception is raised.

Number Classes

3-5

COOL User’s Manual

operator float ();
Overloaded operator to provide implicit conversion between complex objects and
the built-in float type when appropriate.

inline double imaginary () const;
Returns the imaginary part of the complex number.

inline Complex invert () const;
Returns the reciprocal of a complex number. If the operation results in an arithme-
tic error of some type, the appropriate exception is raised.

operator int ();
Overloaded operator to provide implicit conversion between complex objects and
the built-in int type when appropriate.

operator long ();
Overloaded operator to provide implicit conversion between complex objects and
the built-in long type when appropriate.

Complex operator– ();
Overloads the unary minus operator for the Complex class and returns a new object
whose value is the negated real value of the object. If the operation results in an
arithmetic error of some type, the appropriate exception is raised.

Complex& operator= (const Complex& c);
Overloads the assignment operator for the Complex class and assigns one complex
number to have the value of another. A reference to the updated object is returned.

inline void operator+= (const Complex& c);
Overloads the addition-with-assignment operator for the Complex class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

inline void operator–= (const Complex& c);
Overloads the subtraction-with-assignment operator for the Complex class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

inline void operator*= (const Complex& c);
Overloads the multiplication-with-assignment operator for the Complex class. If
the operation results in an arithmetic error of some type, the appropriate exception
is raised.

inline void operator/= (const Complex& c);
Overloads the division-with-assignment operator for the Complex class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

inline Complex& operator++ ();
Overloads the increment operator to provide an increment capability for the
Complex class. If the operation results in an arithmetic error of some type, the ap-
propriate exception is raised. A reference to the updated complex object is re-
turned.

Number Classes

3-4

COOL User’s Manual

Complex Class 3.5 The Complex class is a complex number class with basic arithmetic support, con-

version to and from built-in types, and simple arithmetic exception handling. A Com-
plex object has the same precision and range of values as the system-defined type
double. Implicit conversion to the system-defined types short, int, long, float, and
double is supported by overloaded operator member functions. However, despite the
implicit conversions and judicious use of inline member functions, arithmetic opera-
tions on Complex objects are slower than the built-in types.

The Complex class implements common arithmetic exception handling and provides
application support for detecting negative infinity, positive infinity, overflow, and un-
derflow that may result from an operation. If one of these conditions is detected or an
attempt to convert from a Complex with no value to a built-in type is made, an excep-
tion is raised. The programmer can provide an exception handler at runtime to take care
of this problem. If no such handler is available, an error message is printed and program
execution ends. See Section 13 for more information on the COOL exception handling
mechanism.

Name: Complex — Complex number class

Synopsis: #include <COOL/Complex.h>

Base Classes: None

Friend Classes: None

Constructors: inline Complex ();
Creates a new complex number object initialized to floating point zero.

inline Complex (double real, double imaginary = 0.0);
Creates a new complex number object whose real part is set to real and whose
imaginary part is initialized to the value of imaginary.

inline Complex (const Complex& c);
Creates a new complex number object whose real and imaginary parts are initial-
ized to the values of those of another complex number c.

Member Functions: inline Complex conjugate () const;
Calculates the conjugate of a complex number and returns a new object whose
value is the negated imaginary value of the object. If the operation results in an
arithmetic error of some type, the appropriate exception is raised.

inline Complex cos (Complex& c) const;
Calculates the cosine of a complex number c. A new complex object is returned as
the result. If the operation results in an arithmetic error of some type, the appropri-
ate exception is raised.

inline Complex cosh (Complex& c) const;
Calculates the hyperbolic cosine of a complex number c. A new complex object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

operator double ();
Overloaded operator to provide implicit conversion between complex objects and
the built-in double type when appropriate.

Number Classes

3-3

COOL User’s Manual

inline void set_seed (int seed);
Sets the seed value for the currently-selected random number generator function
and reinitilizes the state.

Random Class 3.4 The following program creates two random number objects using different

Example generator algorithms to provide random numbers within a specified range. The first

uses a variation of the system-supplied rand() function and the second a three-con-
gruential linear generator. Ten random numbers from each are sent to the standard out-
put.

 1 #include <COOL/Random.h> // Include Random class

 2 int main (void) {

 3 Random r1 (SIMPLE, 1, 3.0, 9.0); // Simple rand() generator

 4 Random r2 (THREE_CONGRUENTIAL,1,5.0,11.5); // Highly random generator

 5 cout << ”Simple random number generator:\n”; // Output banner title
 6 for (int i = 0; i < 10; i++) // Generate 10 random numbers

 7 cout << ” Random number ” << i << ” is: ” << r1.next () << ”\n”;

 8 cout << ”\nThree congruential linear random number generator:\n”;

 9 for (i = 0; i < 10; i++) // Generate 10 random numbers

10 cout << ” Random number ” << i << ” is: ” << r2.next () << ”\n”;

11 return (0); // Exit with OK status

12 }

Line 1 includes the COOL Random.h class header file. Line 3 defines a random number
generator of type SIMPLE for generator numbers within the range of 3.0 to 9.0 inclusive.
Line 4 defines a random number generator of type THREE_CONGRUENTIAL for generator
numbers within the range of 5.0 to 11.5 inclusive. Lines 6 through 10 utilize two loops
to generate and print ten numbers from each generator. Finally, the program ends with a
valid exit code.

The following shows the output from the program:

Simple random number generator:
Random number 0 is: 6.08322

Random number 1 is: 4.05445

Random number 2 is: 4.85191

Random number 3 is: 6.2072

Random number 4 is: 8.68577

Random number 5 is: 4.03042

Random number 6 is: 7.21339

Random number 7 is: 4.35858

Random number 8 is: 5.96864

Random number 9 is: 3.74832

Three congruential linear random number generator:
Random number 0 is: 9.26861

Random number 1 is: 7.84012

Random number 2 is: 8.84924

Random number 3 is: 7.22898

Random number 4 is: 8.1818

Random number 5 is: 7.3039

Random number 6 is: 9.18251

Random number 7 is: 10.0368

Random number 8 is: 10.3957

Random number 9 is: 11.3929

Number Classes

3-2

COOL User’s Manual

The Random class allows an application to select one of five types of random number
generators based upon the usage requirements. Each generator function has different
characteristics and all are defined to be of type RNG_TYPE. The SIMPLE and SHUF-
FLE functions use the system rand function, while the ONE_CONGRUENTIAL,
THREE_CONGRUENTIAL, and SUBTRACTIVE functions are self-contained,
portable implementations. Following are descriptions of each generator function.

• SIMPLE — When speed is the predominant concern, this function uses the sys-
tem-supplied rand function. Although sequential correlation of successive random
values is a high probability, this function at least ensures that the value’s least sig-
nificant bits are as random as the most significant bits. In many system random
generator functions, the value’s least significant bits are often less random than the
most significant bits.

• SHUFFLE — This function uses the rand function and a shuffling procedure.
Random numbers are stored in a buffer and selected randomly to break up sequen-
tial correlation in the system-supplied function.

• ONE_CONGRUENTIAL — This self-contained function uses one linear con-
gruential generator instead of the rand function to implement a portable random
number generator. This guarantees no sequential correlation between the random
values returned.

• THREE_CONGRUENTIAL — This portable function uses three linear con-
gruential generators to implement a random number generator whose period is es-
sentially infinite and has no sequential correlations.

• SUBTRACTIVE — This function implements a portable random number genera-
tor that does not use linear congruential generators, but rather an original subtrac-
tive member function as suggested in Volume 2 of The Art of Computer

Programming, written by Donald Knuth.

Name: Random — A portable, user-selectable random number generator

Synopsis: #include <COOL/Random.h>

Base Classes: Generic

Friend Classes: None

Constructor: Random (RNG_TYPE r_type, int seed = 1, float lower = 0.0,
float upper = 100.0);

Constructor for a floating-point random number generator that initializes the se-
lected random number generator function with the user-supplied seed value.

Member Functions: inline double next ();
Returns the next double floating-point random number within the user-specified
range.

inline int get_seed () const;
Returns the seed value for the currently-selected random number generator.

inline void set_rng (RNG_TYPE r_type);
Sets the random number generator function to the type selected by the user and
reinitializes the state.

3-1

COOL User’s Manual

NUMBER CLASSES

Introduction 3.1 Simple integers and floating point numbers do not provide the needed precision

for many applications. The COOL number classes are a collection of numerically-ori-
ented classes that augment the built-in numerical data types to provide such features as
extended precision, range-checked types, and complex numbers. The following classes
are discussed in this section:

• Random

• Complex

• Rational

• Bignum

• Range<Type,lbound,hbound>

The Random class implements five variations of random number generators, each with
different portability, efficiency, and accuracy characteristics. The Complex class im-
plements the complex number type for C++ and provides all of the basic arithmetic and
trigonometric functions. The Rational class uses the built-in long type to implement an
extended precision rational data type for resolving inadequate round-off or truncation
results from the built-in numerical data types. The Bignum class implements near-infi-
nite precision integers and arithmetic by using a dynamic bit vector.

Finally, the parameterized Range<Type,lbound,hbound> class enables arbitrary user-
defined ranges to be implemented in C++ classes. Typically, but not always, this is used
with other number classes to select a range of valid values for a particular numerical
type. Features and advantages of the Range<Type,lbound,hbound> class are discussed
in this section. However, complete details of parameterized templates are provided in
Section 5.

Requirements 3.2 This section discusses the number classes. It assumes you have a working under-

standing of the C++ language and type system. In addition, you should understand the
distinction between the concepts and ideas associated with overloaded operators and
friend functions.

Random Class 3.3 The Random class provides several general-purpose random number generators

with features similar to those as described in Chapter 7 of Numerical Recipes in C, writ-
ten by William T. Vetterling. The ANSI C draft standard specifies the rand function
that allows an application to obtain successive random numbers in a sequence by re-
peated calls. However, system-supplied random number generators in the form of the
rand function are generally of poor quality, particularly when true random distribution
over a range is important. Specifically, system random number generators are almost
always linear congruential generators whose period is not very large. The ANSI C draft
specification only requires a modulus of 32767, which can be disastrous for such uses as
a Monte Carlo integration over 10^6 points.

Printed on: Wed Apr 18 07:03:17 1990

Last saved on: Tue Apr 17 13:44:06 1990

Document: s3

For: skc

pl2ps 3.2.1 Copyright 1987 Interleaf, Inc.

